
Recursive Filtering in Image Processing

Martin Vicanek

25. March 2016

1 Introduction

Filtering is an important and much used discipline in image processing.
The goal is either to remove unwanted components such as noise, or to en-
hance certain features, or simply as an artistic modification. Some filters act
isotropically (gaussian blur), others have a preference with respect to some
direction. In this article, a class of simple recursive filters in 2 dimensions are
analyzed and examples are given for isotropic as well as directional filters.
The latter includes a notch filter for removal of periodic, oriented patterns.

2 Recursive filtering of images

Recursive filters are more efficient than straight convolutions even with mod-
erate kernel sizes. A simple blur with a 100x100 pixels kernel, if implemented
in a naive way, would be extremely slow even with todays advanced harware.
Recursive filters can handle such a situation dramatically faster [1].

Sometimes filters can be applied in x- and in y-direction in successive, in-
dependent passes. These are separable filters, such as the box blur filter or
the gaussian blur filter. It is obvious that a directional filter will not be sep-
arable in general. A suitable general recursion scheme may scan the image
in horizontal lines, calculating each new pixel value from pixels nearby. Let
the source image pixel values be denoted by fnm and gnm for the processed

1

image. Then the iteration process may be described as

gnm =
∑
`k

b`k fn−`,m−k −
∑
`k

a`k gn−`,m−k (1)

where the sums over `k typically encompass the neighborhood. Note that
the second term on the right hand side of equation (1) involves pixels already
processed. Hence the sum can only include pixels already visited. This is
different for the first sum over fnm.

Figure 1: Grid points for image filtering. The red point is current. Gray and
black points have been visited. Black points are processed nearest neighbors.

Equation (1) has to be completed by boundary conditions, where not all
neigbors exist. A common choice is a reflecting boundary condition, where
exterior pixels are generated by mirroring interior pixels at the image bound-
aries. Another option is to simply replicate the boundary pixels to the ex-
terior. Less suited are periodic boundary conditions, unless the goal is a
tileable image.

Filters with constant coefficients are efficiently characterized by their action
on individual frequency components of the source. This assumes an expan-
sion of the form

fnm =
∑
ω1,ω2

F (ω1, ω2)e
imω1+inω2 (2)

In this representation, the action of the filter is a simple multiplication,

gnm =
∑
ω1,ω2

H(ω1, ω2)F (ω1, ω2)e
imω1+inω2 (3)

2

with the transfer function

H(ω1, ω2) =

∑
`k b`ke

−ikω1−i`ω2∑
`k a`ke

−ikω1−i`ω2
=:

P

Q
. (4)

Recursive filters will introduce a shift in the direction of processing. To
compensate for this, filtering is usually applied again in oposite direction,
resulting in a zero phase transfer function |H(ω1, ω2)|2.

Stability analysis of linear recursion equations is well developed in 1D. The
matter is more complex for equation (1). For separable 2D filters, the prob-
lem may be reduced to 1D.

2.1 The simplest 1D recursive filter

THe simplest recursive filter is a 1D leaky integrator:

a0 gnm = fnm − a1 gn,m−1. (5)

Its transfer funcion is H(ω1) = 1/Q with

Q(ω1) = a0 + a1e
−iω1 . (6)

A normalization condition applies to conserve overall brightness

a0 + a1 = 1. (7)

In order to obtain a zero phase filter the iteration is applied twice (for-
ward/backward), resulting in

|Q|2 = A0 + A1 cosω1 (8)

with
A0 = 1− A1 = 1− 2a1(1− a1), A1 = 2a1(1− a1). (9)

3

Figure 2: Transposed Direct Form 2 implementation of eq.(14).

2.2 A 4-pass blur filter

It is possible to apply the filter in the previous section first along one axis
and then along the other. The overall transfer function is a product of the
1D transfer functions,

Q(ω1)Q(ω2) = (a0 + a1e
iω1)(a0 + a1e

iω2) (10)

and

|Q1Q2|2 = A′0+A′1 cosω1+A′2 cosω2+A′3 cos(ω1+ω2)+A′4 cos(ω2−ω1) (11)

with new coefficients A′n given by

A′0 = A2
0, A′1 = A′2 = 2A0A1, A′3 = A′4 = 2A2

1. (12)

To see the filter behavior for long waves, we perform a Taylor expansion near
ω1 = ω2 = 0:

|Q1Q2|2 = 1− 1
2
A1(ω

2
1 + ω2

2) + 1
24
A1(ω

4
1 + ω4

2 + 6A1ω
2
1ω

2
2) (13)

Note that the filter is isotropic to within 2nd order. It is isotropic to within
4th order for the special case A1 = 1/3. However, A1 is negative for a blur
filter with blur radius r2 = −1/A1. Below is a pseudocode for an (almost)
isotropic 4-pass recursive filter.

4

Figure 3: White noise before (left) and after (right) 4-pass filtering.

// f(N,M) = N*M image pixel values array

// r = blur radius

a = 2*r/(r + sqrt(r^2 + 2))

// warmup phase reflecting BC

g = 0

do m from M-1 to 0 {

g = g + a*(f(0,m) - g)

}

do n from 0 to N-1 {

// 1st pass

do m from 0 to M-1 {

g = g + a*(f(n,m) - g)

f(n,m) = g

}

// 2nd pass

do m from M-1 to 0 {

g = g + a*(f(n,m) - g)

f(n,m) = g

}

}

do m from 0 to M-1 {

5

// 3rd pass

do n from N-1 to 0 {

g = g + a*(f(n,m) - g)

f(n,m) = g

}

// 4th pass

do n from 0 to N-1 {

g = g + a*(f(n,m) - g)

f(n,m) = g

}

}

2.3 A 2-pass blur filter

Figure 4: 2-pass blur of white noise. The result is identical to the 4-pass blur
except near the image border.

Next consider a 2D filter involving nearest neighbors in the 3rd quadrant, as
depicted in figure 1,

a0 gnm = fnm − a1 gn,m−1 − a2 gn−1,m − a3 gn−1,m−1 (14)

The orresponding transfer funcion is H = 1/Q, with

Q(ω1, ω2) = a0 + a1e
−iω1 + a2e

−iω2 + a3e
−i(ω1+ω2). (15)

6

The normalization codition to conserve overall brightness is

a0 + a1 + a2 + a3 = 1. (16)

We obtain a zero-phase filter by forward/backward iteration, resulting in

|Q|2 = A0 +A1 cosω1 +A2 cosω2 +A3 cos(ω1 + ω2) +A4 cos(ω2 − ω1). (17)

The coefficients An are related to the original coefficients an of eq. (14) by

A0 = a20 + a21 + a22 + a23
A1 = 2(a0a1 + a2a3) A2 = 2(a0a2 + a1a3)

A3 = 2a0a3 A4 = 2a1a2 (18)

If we want the resulting filter to be isotropic, we need to set

A1 = A2, A3 = A4. (19)

Then Taylor expansion near ω1 = ω2 = 0 yields

|Q1Q2|2 = 1− 1
2
(A1 + 2A3)(ω

2
1 + ω2

2) + 1
24

[
(A1 + 2A3)(ω

4
1 + ω4

2) + 12A3ω
2
1ω

2
2

]
.

(20)
Note that the filter is isotropic to within 2nd order. It is isotropic to within
4th order for the special case A1 = 2A3.

In terms of the original coefficients, eq.(19) holds if a1 = a2 and a0a3 = a21.
This is fulfilled by the following parametric representation,

a0 = 1/(1− q)2, a1 = a2 = −qa0, a3 = q2a0. (21)

There are other solutions to eq.(19) which, however, lead to unstable recur-
sions. Below is a pseudocode for an (almost) isotropic 2-pass filter.

// f(N,M) = N*M image pixel values array

// r = blur radius

q = r^2/(r^2 + 1 + r*sqrt(2*r^2 + 1))

b = (1 - q)^2

// 1st pass

do n from 1 to N-1 {

g = (1 - q)*f(n,0)

7

do m from 0 to M-1 {

g = b*f(n,m) + q*g

f(n,m) = g + q*f(n-1,m)

}

}

// 2nd pass

do n from N-2 to 0 {

g = (1 - q)*f(n,M-1)

do m from M-1 to 0 {

g = b*f(n,m) + q*g

f(n,m) = g + q*f(n+1,m)

}

}

3 Directional blur

Figure 5: White noise after directional blur. Left: θ = 0. Right: θ = 20◦.

In this section we will design a directional blur filter. Ideally, such a filter
would act only in one direction and not perpendicular to it. A well-known
application is the creation of a brushed aluminum texture from noise, another
is simulation of motion blur.

8

It is fairly easy to design a directional filter if the orientation coincides with
one of the image axes. The case of an arbitrary direction is more interesting,
however.

Let the direction of blur be characterized by angle θ with respect to the
ω1-axis. Introduce the following abreviations,

µ = cos θ, ν = sin θ. (22)

A suitable directional lowpass filter function is

|Q|2 = 1 + (µω1 + νω2)
2r2, (23)

where r denotes the blur radius.

Taylor expand eq.(17) around (ω1, ω2) = (0, 0) and equate coefficients up to
2nd order to get

A1 + A3 + A4 = −2µ2r2

A2 + A3 + A4 = −2ν2r2 (24)

A3 − A4 = −2µνr2

Together with the normalization condition, eq. (16), these are four conditions
for four parameters. We may rewrite equations (24) in terms of the original
coefficeients an using eq.(18),

a0a1 + a2a3 + a0a3 + a1a2 = −µ2r2

a0a2 + a1a3 + a0a3 + a1a2 = −ν2r2 (25)

a0a3 − a1a2 = −µνr2

This system may be solved in closed form. Write

(a0 + a2)(a1 + a3) = −µ2r2 = (a0 + a2)[1− (a0 + a2)]

(a0 + a1)(a2 + a3) = −ν2r2 = (a0 + a1)[1− (a0 + a1)] (26)

where the second equality follows from normalization eq.(16). These are
quadratic equations for (a0 + a2) and (a0 + a1), respectively, which may be
readily solved,

a0 + a2 = 1
2

+ w1 w1 =
√

1
4

+ µ2r2

a0 + a1 = 1
2

+ w2 w2 =
√

1
4

+ ν2r2 (27)

9

From there, it is easy to solve for the an,

a1 = 1
2

+ w2 − a0
a2 = 1

2
+ w1 − a0 (28)

a3 = a0 − w1 − w2

The last equation follows from normalization. Substitute this in the last
eq.(25) to get

a0 = (1
2

+ w1)(
1
2

+ w2)− µνr2 (29)

Below is a pseudocode for a directional 2-pass filter. Note that the iteration
eq.(14), when scanned along a line, may be viewed as a 1d single pole filter
with two inputs fnm and gn−1,m. The latter is an input because the values
have been processed already. We choose the Transposed Direct Form 2 as a
suitable implementation, refer to figure 2.

// f(N,M) = N*M image pixel values array

// r = blur radius

// angle = direction of blur

mu = cos(angle)

nu = sin(angle)

R1 = (mu*r)^2

R2 = (nu*r)^2

R3 = mu*nu*r^2

w1 = sqrt(0.25 + R1)

w2 = sqrt(0.25 + R2)

a0 = (w1 + 0.5)*(w2 + 0.5) - abs(R3)

a1 = 0.5 + w2 - a0

a2 = 0.5 + w1 - a0

a3 = a0 - w1 - w2

b0 = 1/a0

b1 = -a2/a0

q = -a1/a0

c = -a3/a0

// iterate in the direction of blur

if R3 > 0 then

M0 = 0, M1 = M - 1

else

M1 = 0, M0 = M - 1

10

// 1st pass

do n from 1 to N-1 {

do m from M0 to M1 {

f(n,m) = b0*f(n,m) + b1*f(n-1,m) + g

g = q*f(n,m) + c*f(n-1,m)

}

}

// 2nd pass

do n from N-2 to 0 {

do m from M1 to M0 {

f(n,m) = b0*f(n,m) + b1*f(n+1,m) + g

g = q*f(n,m) + c*f(n+1,m)

}

}

The 2-pass filter yields a similar blur as the 4-pass filter in the previous
section, however there are two differences: (i) it is easier to implement re-
flecting BC for the 4-pass (ii) the 4-pass is less sensitive to rounding errors.
We recommend to use at least 16 bits/channel in both cases.

4 Removal of periodic patterns

Suppose that we want to suppress or entirely remove some of the Fourier
components in eq.(2) near some vector frequency (ω1, ω2) = (α, β), e.g. in
order to remove a periodic artefact from an image. Since fnm is real val-
ued, F (ω1, ω2) has Hermitean symmetry. Therefore, we will have to remove
components at both (α, β) and −(α, β).

We will isolate the unwanted frequencies in three steps: (i) frequency down-
conversion, (ii) lowpass, and (iii) frequency upconversion. This technique is
known in radio signal processing as heterodyning. Here we apply the same
technique for image processing in two dimensions.

(i) Frequency downconversion is accomplished by multiplying the image by
sine and cosine waves, respectively,

f ′nm = cos(nβ +mα)fnm, f ′′nm = sin(nβ +mα)fnm. (30)

11

Figure 6: Image with periodic artefact, presumably a finger print. Left:
before Right: after notch filtering.

(ii) Lowpass filtering an image is essentially a blur. We may use a simple
isotropic filter as in section 2.2 or 2.3 to obtain g′nm from f ′nm and g′′nm from
f ′′nm, respectively,

g′nm =
∑
ω1,ω2

H(ω1, ω2)F
′(ω1, ω2)e

imω1+inω2

g′′nm =
∑
ω1,ω2

H(ω1, ω2)F
′′(ω1, ω2)e

imω1+inω2 (31)

The lowpass transfer function H consists of a single peak at ω1 = ω2 = 0.

(iii) Frequency upconversion: consider the expression

gnm = 2 cos(nβ +mα)g′nm + 2 sin(nβ +mα)g′′nm. (32)

Then, as shown in the Appendix,

gnm =
∑
ω1,ω2

[
H(ω1 +α, ω2 +β) +H(ω1−α, ω2−β)

]
F (ω1, ω2)e

imω1+inω2 (33)

12

Hence the result of the three steps (i), (ii) and (iii) is a filter with peaks at
frequencies (α, β) and −(α, β), respectively. As a consequence, subtracting
gnm from the original image fnm results in a directional notch filter.

Below is a pseudocode for a directional notch filter.

/*

Input:

f(N,M) = N*M image pixel values array

alpha, beta = notch frequencies

Q = inverse relative notch bandwidth

Output:

g(N,M) = N*M filtered image pixel values array

*/

// some constants

c1 = cos(alfa)

s1 = sin(alfa)

r = Q/sqrt(alpha^2 + bea^2)

q = r^2/(r^2 + 1 + r*sqrt(2*r^2 + 1))

b = (1 - q)^2

// frequency downconversion

do n from 1 to N-1 {

c = cos(n*beta)

s = sin(n*beta)

do m from 0 to M-1 {

f1(n,m) = c*f(n,m)

f2(n,m) = s*f(n,m)

tmp = c*c1 - s*s1 // generate cos and sin recursively along the way

s = s*c1 + c*s1

c = tmp

}

}

// lowpass (1st pass)

do n from 1 to N-1 {

g1 = (1 - q)*f1(n,0)

g2 = (1 - q)*f2(n,0)

do m from 0 to M-1 {

g1 = b*f1(n,m) + q*g1

g2 = b*f2(n,m) + q*g2

f1(n,m) = g1 + q*f1(n-1,m)

13

f2(n,m) = g2 + q*f2(n-1,m)

}

}

// lowpass (2nd pass)

do n from N-2 to 0 {

g1 = (1 - q)*f1(n,M-1)

g2 = (1 - q)*f2(n,M-1)

do m from M-1 to 0 {

g1 = b*f1(n,m) + q*g1

g2 = b*f2(n,m) + q*g2

f1(n,m) = g1 + q*f1(n+1,m)

f2(n,m) = g2 + q*f2(n+1,m)

}

}

// frequency upconversion

do n from 1 to N-1 {

c = 2*cos(n*beta)

s = 2*sin(n*beta)

do m from 0 to M-1 {

g(n,m) = f(n,m) - c*f1(n,m) - s*f2(n,m) // subtract for notch

tmp = c*c1 - s*s1

s = s*c1 + c*s1

c = tmp

}

}

5 Conclusion and Outlook

The two examples of directional filters demonstrate that specific modifica-
tions can be achieved quite efficiently even with very simple recursive filters.
The heterodyning approach to the notch filter seems to be new in image
processing.

However, the full potential of recursive filtering may lie beyond linear shift
invariance (LSI), i.e. when filter coefficients may vary across the image.
Some work has been done for the Gauss filter. In this context it would
be interesting to consider other than Direct Forms. From audio processing

14

we know that certain topologies perform better than others with regard to
modulation. Furthermore, other filter forms may have better SNR and low-
frequency accuracy.

Nonlinear filters, where filter coefficients are derived from the image itself,
include bilateral filtering, anisotropic filtering, edge-aware smoothing, detail
enhancement, HDRI.

6 Apendix

We will prove eq.(33). Consider a single spectral component in one dimension
only,

fn = einω. (34)

Then

f ′n = cos(nα)fn = 1
2

(
ein(ω+α) + ein(ω−α)

)
f ′n = sin(nα)fn = 1

2i

(
ein(ω+α) − ein(ω−α)

)
. (35)

Applying a lowpass filter to these expressions will give mostly zero except in
two cases:

Case 1: ω ≈ α

g′n = 1
2
H(ω − α)ein(ω−α), g′′n = − 1

2i
H(ω − α)ein(ω−α). (36)

Now multiply again with sine and cosine waves,

2 cos(nα)g′n = 1
2
H(ω − α)ein(ω−α)

(
einα + e−inα

)
2 sin(nα)g′′n = −1

2
H(ω − α)ein(ω−α)

(
einα − e−inα

)
. (37)

Adding the two expressions, two terms cancel and the result is

gn = H(ω − α)einω, ω ≈ α. (38)

Case 2: ω ≈ −α

g′n = 1
2
H(ω + α)ein(ω+α), g′′n = 1

2i
H(ω + α)ein(ω+α) (39)

15

Multiply again with sine and cosine waves,

2 cos(nα)g′n = 1
2
H(ω + α)ein(ω+α)

(
einα + e−inα

)
2 sin(nα)g′′n = −1

2
H(ω + α)ein(ω+α)

(
einα − e−inα

)
. (40)

Adding the two expressions, again two terms cancel and the result is

gn = H(ω + α)einω, ω ≈ −α. (41)

If the lowpass filter is sufficiently narrow, the two above cases are mutually
exclusive and we may write

gn =
[
H(ω − α) +H(ω + α)

]
einω. (42)

Equation (42) holds for a single Fourier component. However, since all op-
erations are linear, the result may be generalized for any linear combination
fn =

∑
ω F (ω)einω,

gn =
∑
ω

[
H(ω − α) +H(ω + α)

]
F (ω)einω (43)

Eqquation (43) is the result for one dimension. Generalization to two di-
mentions is straght forward, as the operations on the different dimensions
are largely independent. (For a separable lowpass filter kernel, decoupling is
complete.) The result is given in equation (33).

References

[1] van Vliet LJ, Young IT, Verbeek PW. Recursive Gaussian derivative fil-
ters. In: Proceedings of the 14th International Conference on Pattern
Recognition, Brisbane, Australia, August 1998. p. 50914.

16

	Introduction
	Recursive filtering of images
	The simplest 1D recursive filter
	A 4-pass blur filter
	A 2-pass blur filter

	Directional blur
	Removal of periodic patterns
	Conclusion and Outlook
	Apendix

