
Fast and accurate recursive Gaussian filter

Martin Vicanek

1. July 2025

Abstract

Gaussian filters have many applications in DSP, smoothing, image processing,
noise reduction, edge detection, etc. Inspired by Young and van Vliet[1], I propose a
fast and accurate method and implementation of a recursive Gaussian filter.

1 Introduction

Thirty years ago, Young and van Vliet[1] published their paper on recursive imple-
mentation of the Gaussian Filter. I have been using it quite happily until recently,
when I was challenged to assess its accuracy in a project. It turned out to be less
accurate at small blur radii, so I revisited their work and, surprisingly, found out
that accuracy could be improved at little cost by two modifications of their original
method. The first modification is that rather than approximating the Gaussian ker-
nel in Fourier space, we use an approximation in direct space. The second, and likely
more important modification concerns discretization: While Young and van Vliet[1]
use a backward difference technique (they also discuss the bilinear transform[2] as an
alternative), we propose the impulse invariant method[3].

2 Continuous Gauss filter

Linear time-invariant filters may be represented as a convolution of a signal x(t) with
the filter’s impulse response h(t). In the continuous-time domain, the resulting signal
y(t) after applying the filter is given by

y(t) =

∫
x(τ)h(t− τ)dτ. (1)

A Gaussian filter has an impulse response of the form

h(t) = e−t2/(2σ2) (2)

where σ is the standard deviation. For now, h(t) is normalized to unity at t = 0.

1

Since convolution is a linear process, we may split up h(t) in two parts for negative
and positive arguments, respectively, carry out convolutions with the one and the
other, and add the results. The resulting filter action will be unchanged.

Consider a Gaussian approximation for t ≥ 0 with three exponentials,

h(t) = A0e
s0t +A1e

s1t + Ā1e
s̄1t (3)

where A0 and s0 are real, A1 and s1 are complex fit parameters, and Ā1 and s̄1
their respective complex conjugates. With the values given in table 1, the function
in eq.(2) is approximated with an absolute error less than 2.5 · 10−3.

Index k sk Ak

1 −1.3803/σ 1.4486

2 (−1.3287 + 1.4576i)/σ −0.2243− 0.4814i

Table 1: Fit parameters for Gaussian function, equations (2) and (3).

In Laplace space, convolution becomes a simple multiplication. The Laplace
transform of the expression in eq.(3) reads

H(s) =
A0

s− s0
+

A1

s− s1
+

Ā1

s− s̄1
. (4)

Obviously, s0, s1, and s̄1 are poles in the Laplace plane, whereas A0, A1, and Ā1 are
the corresponding residues. Young and van Vliet[1] use a similar expression with one
real and two complex conjugate poles, but the numerical values are different because
they approximate the Gaussian in Fourier space.

3 Discrete Gauss filter

A filter may be applied to a signal of sampled values xn at times t = n.1 In that
case, the equivalent of the convolution in eq.(1) becomes

yn =
∑
m

xmhn−m (5)

with the filter’s impulse response hn.
There are several possibilities to obtain a discrete filter response from a continuous

one. A popular choice is the bilinear transform[2], although Young and van Vliet[1]
prefer backward differences to avoid ringing. In this context, however, it appears
natural to go with impulse invariance[3], because it essentially samples the continuous
impulse response,

hn = h(t) at t = n. (6)

1Without loss of generality, we may choose the sampling interval, usually denoted by T , as unity.

2

Applying impulse invariance to eq.(4) yields the filter response in z-space,

H(z) =
A0

1− p0z−1
+

A1

1− p1z−1
+

Ā1

1− p̄1z−1
, (7)

where the poles p0, p1, and p̄1 in z-space are obtained from the poles s0, s1, and s̄1
in Laplace space,

pk = exp(sk), k = 1, 2. (8)

The second and third term on the right side of eq.(7) may be lumped together to
form a biquad. We may denote its contribution by H2(z). In the usual notation,

H2(z) =
b0 + b1z

−1

1 + a1z−1 + a2z−2
(9)

with

b0 = 2Re(A1), b1 = −2Re(A1p̄1), a1 = −2Re(p1), a2 = |p1|2. (10)

Likewise, the first term on the right side of eq.(7) represents a 1-pole filter H1(z),

H1(z) =
b

1 + az−1
with b = A0 and a = −p0. (11)

We have omitted indices for a and b in eq.(11) since there is only one of each, and
also to distinguish them from the biquad coefficients in eq.(9).

4 Recursive implementation

In the preceding section we have derived expressions for the Gauss filter response
in z space. Since these are rational functions of z−1, the filter may be implemented
recursively,

un = bxn − aun−1

vn = b0xn + b1xn−1 − a1vn−1 − a2vn−2, (12)

where un is the result of the 1-pole and vn the result of the biquad filter.
Eqs.(12) account for the positive part (including zero) of the Gauss filter hn with

n = 0, 1, 2, The negative part is obtained by a similar recursion in the opposite
direction (backward pass),

ubackn = bxn − aubackn+1

vbackn = b0xn + b1xn+1 − a1v
back
n+1 − a2v

back
n+2 , (13)

The final result yn of the Gauss filter is given by the sum of all contributions,

yn = un + vn + ubackn + vbackn − xn. (14)

We have to subtract xn, refer to last term in eq.(14), because h0 appears in both the
forward and the backward pass, so xn is counted twice.

3

It is common to normalize the Gaussian filter such that a constant input signal
is unchanged, in other words, the filter is transparent for DC. This is achieved by
dividing the result by the following constant,

Norm = 2

(
b

1 + a
+

b0 + b1
1 + a1 + a2

)
− 1 (15)

The expression on the right hand side of eq.(15) follows from the z-transform of
eq.(14) at z = 0, noting that un and vn are the results of filters H0(z) and H1(z),
respectively, acting on xn.

Below is a code snippet implementing the proposed algorithm. It is not particu-
larly optimized for the sake of clarity.

// given an array x[n] of size N and sigma

// return Gaussian blur in array y[n] of size N

// need a temporary array temp[n] of size N

// s-poles and residues

A0 = 1.4486;

A1r = 0.2243;

A1i = 0.4814;

s0 = -1.3803/sigma;

s1r = -1.3287/sigma;

s1i = 1.4576/sigma;

// z-poles

p0 = fexp(s0);

p1r = fexp(s1r)*fcos(s1i);

p1i = fexp(s1r)*fsin(s1i);

// filter constants

b = A0;

a = -p0;

b0 = 2*A1r;

b1 = 2*(A1R*p1R + A1i*p1i);

a1 = -2*p1r;

a2 = p1r*p1r + p1i*p1i;

invNorm = 0.5/(b/(1.0 + a) + (b0 + b1)/(1.0 + a1 + a2) - 0.5);

// forward pass //

// initialize recursion (depends on boundary conditions)

x1 = u = v1 = v2 = 0.0;

// perform recursion

for (n = 0; n < N; n++) {

u = b*x[n] - a*u;

v = b0*x[n] + b1*x1 - a1*v1 - a2*v2;

temp[n] = u + v;

v2 = v1;

v1 = v;

x1 = x[n];

4

}

// backward pass ///////////////////////////////////////

// initialize recursion (depends on boundary conditions)

x1 = u = v1 = v2 = 0.0;

// perform recursion

for (n = N-1; n >= 0; n--) {

u = b*x[n] - a*u;

v = b0*x[n] + b1*x1 - a1*v1 - a2*v2;

y[n] = (temp[n] + u + v - x[n])*invNorm;

v2 = v1;

v1 = v;

x1 = x[n];

}

A note on boundary conditions: As a result of the blur effect, each point spreads
out to some extent into its neighborhood. By the same token, each blurred point
receives contributions from its neighbors. At the boundaries, this has two conse-
quences: (i) Boundary points receive (unknown) contributions from outside the data
set. Assumptions have to be made, depending on context. The simplest possibility,
which is adopted in the code above, is to set outside data equal to zero. (ii) Boundary
points spread out beyond the data set. Depending on context, one may want to take
this enlargement into account (not included in the above code).

5 Results and Discussion

Figure 1 shows the impulse response (IR) for a moderate Gaussian blur with σ = 1.
The present scheme is more accurate than [1], although both IRs are not too far away
from the Gaussian.

Figure 2 shows the error of the two methods. At n = 1 and n = −1, the error of
[1] peaks at about 10% of the IR maximum in Figure 1.

Figure 3 shows various IRs for σ = 5. Besides the present scheme and [1], the
result of three consecutive box blurs with box sizes 9, 9, and 11, respectively, is
included. The agreement with the Gaussian is fair for all three methods.

Figure 4 depicts the error of each method for σ = 5. The method of [1] has about
the same maximum error as the three consecutive box blurs (about 4% of the IR
maximum in Figure 3), while the present scheme is clearly better.

In conclusion, we presented an approximation to the discrete Gaussian filter which
is more accurate than other methods with comparable complexity.

5

Figure 1: Gaussian blur with σ = 1.

Figure 2: Gaussian blur error with σ = 1.

6

Figure 3: Gaussian blur with σ = 5.

Figure 4: Gaussian blur error with σ = 5.

7

References

[1] Ian T. Young, Lucas J. van Vliet, Recursive implementation of the Gaussian
filter, Signal Processing 44 (1995) pp. 139–151. https://repository.tudelft.
nl/file/File_f6003e2f-33a1-42f2-bfa7-2593a44b711a?preview=1

[2] J. O. Smith III, Introduction to Digital Filters, 2007. https://www.dsprelated.
com/freebooks/filters/Digitizing_Analog_Filters_Bilinear.html

[3] J. O. Smith III, Physical Audio Signal Processing, 2010. https://www.

dsprelated.com/freebooks/pasp/Impulse_Invariant_Method.html

8

https://repository.tudelft.nl/file/File_f6003e2f-33a1-42f2-bfa7-2593a44b711a?preview=1
https://repository.tudelft.nl/file/File_f6003e2f-33a1-42f2-bfa7-2593a44b711a?preview=1
https://www.dsprelated.com/freebooks/filters/Digitizing_Analog_Filters_Bilinear.html
https://www.dsprelated.com/freebooks/filters/Digitizing_Analog_Filters_Bilinear.html
https://www.dsprelated.com/freebooks/pasp/Impulse_Invariant_Method.html
https://www.dsprelated.com/freebooks/pasp/Impulse_Invariant_Method.html

	Introduction
	Continuous Gauss filter
	Discrete Gauss filter
	Recursive implementation
	Results and Discussion

