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In a recent thread in comp.dsp [1] Cedron Dawg presented an exact for-
mula for extracting the frequency of a pure tone from three DFT bins [2].
The possibility of using fewer bins remained an open question, also whether
or not there are other three-bin formulas.

Inspired by that thread I was able to derive an exact expression for the
frequency based on values from only two bins. It turns out that that ex-
pression is not unique: it offers a degree of freedom which may be used to
advantage in the presence of noise.

Consider a frame of real valued samples x0, x1, . . . , xN−1 which represent
a pure tone with some frequency, amplitude, and phase. We may use the
center position nc = (N − 1)/2 to write

xn = A cos[(n− nc)ω] +B sin[(n− nc)ω], (1)

where ω denotes a normalized angular frequency in the range 0 ≤ ω ≤ π with
ω = π representing the Nyquist frequency. A and B are real valued constants
to allow for an arbitrary amplitude

√
A2 +B2 and phase arctan(B/A).

The DFT may be written in a form centered around nc,

Xk = e2πiknc/N

N−1∑
n=0

xne
−2πikn/N , (2)

where the sum on the right hand side represents the familiar DFT and the
phase factor in front provides for the symmetry with respect to nc.

Inserting (1) into (2) yields, after some algebra,

Xk = (−1)k
2 sin(Nω/2)

cos βk − cosω

[
A sin

(ω
2

)
cos

(
βk
2

)
+ iB cos

(ω
2

)
sin

(
βk
2

)]
,

(3)
where we have introduced the abbreviation βk = 2πk/N . We outline the
intermediate steps at the end of this note.
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Suppose the set of Xk is known for all k = 0, 1, . . . , N − 1, and the task
is to extract the frequency ω, and possibly A and B. To this end we define
the quantities

uk = (−1)k Re(Xk)/ cos(βk/2), k 6= N/2. (4)

It is easy to see that the following relation holds for any k 6= j:

uj
uk

=
cos βk − cosω

cos βj − cosω
. (5)

Eq.(5) may be solved for ω to yield

ω = arccos

(
uj cos βj − uk cos βk

uj − uk

)
(6)

So far so good: equation (6) provides a formula for the frequency ω using
information from the two bins j and k. Note that j and k need not denote
adjacent bins, although it is reasonable to choose the two bins with maximum
modulus, which, in the case of a pure tone spectrum, will be adjacent bins.
Also note that these two bins will enclose ω, and that the corresponding uj
and uk will have oposite signs.

Eq.(5) will break down for A = 0, however. In that case we may define

vk = (−1)k Im(Xk)/ sin(βk/2), k 6= 0, (7)

and obtain similar formulas as in eqs.(5) and (6). Indeed, any linear combi-
nation

wk = auk + bvk (8)

will do.
This degree of freedom is not so surprising given that two bins hold two

complex valued numbers (i.e. four independent values) to determine three
unknowns ω, A and B. By the same token, one would expect Cedron’s
three-bin formula to be only one among many others. Clearly, we can use
this freedom to our advantage and make an optimum choice of e.g. a and b
for best signal to noise ratio. Although it is not obvious what the best choice
would be, setting

a = cos(βm/2) Re(Xm)

b = sin(βm/2) Im(Xm) (9)

with m denoting the peak bin optimizes the SNR of wm. Hence that choice
is expected to provide nearly optimum accuracy.
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It would seem that because only two bins are used, much information
is actually thrown away - information that could be used if the background
characteristics are known (white noise being the simplest case). On the
other hand, for unknown background one might argue that a two-bin method
provides maximum locality hence minimum interference. I have tested the
scheme only briefly in a real-world scenario with noise or another interfering
tone. Results with wk according to eq.(9) are indeed better than with either
uk or vk plugged into eq.(6).

Derivation of Eq.(3)

We may write eq.(1) in the form

xn =
A− iB

2
eiω(n−nc) +

A+ iB

2
e−iω(n−nc). (10)

The DFT of the exponentials in eq.(10) is

N−1∑
n=0

e−i(βk±ω)(n−nc) =
sin [N(βk ± ω)2]

sin[(βk ± ω)/2]
=

(−1)k sin(Nω/2)

sin[(ω ± βk)/2]
. (11)

Hence we obtain the following expression for the real part:

Re(Xk) =
(−1)kA

2
sin

(
Nω

2

){
1

sin[(ω + βk)/2]
+

1

sin[(ω − βk)/2]

}
(12)

The term in curly brackets in eq.(12) may be simplified using trigonometric
identities, resulting in

4
sin(ω/2) cos(βk/2)

cos βk − cosω
. (13)

The imaginary part Im(Xk) may be treated in a similar way. Collecting all
bits and pieces, we obtain the result in eq.(3).

Derivation of Optimum a and b

If we assume additive white noise, then the Fourier components will fluctuate
with some variance σ2, regardless of k, and the variance will be equal for the
real and imaginary parts:

Var[Re(Xk)] = Var[Im(Xk)] = σ2. (14)

3



Hence the variances of uk and vk will be

Var(uk) =
σ2

cos2(βk/2)
, Var(vk) =

σ2

sin2(βk/2)
, (15)

which yields the variance of wk,

Var(wk) =

[
a2

cos2(βk/2)
+

b2

sin2(βk/2)

]
σ2 (16)

Now the relative mean standard deviation of wk is
√

Var(wk)/|wk|. We want
the relative error of wk to be small because we are taking ratios. Minimizing
the above expression (or easier, its square) results in a condition for a and b,

a

b
=

cos(βk/2)Re(Xk)

sin(βk/2)Im(Xk)
. (17)

Minimum Variance Estimate

The information from two bins leads to an overdetermined system of equa-
tions for ω. With the abreviations µ = cosω, and µk = cos βk, these equa-
tions are:

U(µ) := (uj − uk)µ− ujµj + ukµk = 0

V (µ) := (vj − vk)µ− vjµj + vkµk = 0 (18)

In general, the two equations cannot be solved simultaneously. The best one
can do is to minimize a suitable error. One may square each equation and
minimize their weighted sum. The optimum weights are the inverse variances
of each term. Observe that for adjacent j and k at the peak,

Var(U) ∝ σ2/ cos2(βm/2) Var(V ) ∝ σ2/ sin2(βm/2) (19)

where the index m denotes the peak. Hence the optimum cost function is

cos2(βm/2)U(µ)2 + sin2(βm/2)V (µ)2 = min. (20)

Taking the derivative with respect to µ and equating to zero, we arrive at
the expression

µ = cosω =
cos2(βm/2)(uj − uk)2µu + sin2(βm/2)(vj − vk)2µv

cos2(βm/2)(uj − uk)2 + sin2(βm/2)(vj − vk)2

≈ [Re(Xj +Xk)]
2µu + [Im(Xj +Xk)]

2µv
|Xj +Xk|2

(21)
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where µu and µv are the solutions of U(µ) = 0 and V (µ) = 0, respectively.
This result coincides with the one found in the previous section if we substi-
tute in eq. (9) um ≈ |uj − uk|/2 and vm ≈ |vj − vk|/2. Recall that uj and uk
have opposite signs, likewise for vj and vk.

Formulas in Terms of Ordinary DFT

For easier application of the results we provide the main expressions in terms
of the standard DFT which we denote by Zk,

Zk =
N−1∑
n=0

xne
−iβkn. (22)

The relation between the centered and the standard DFT is

(−1)kRe(Xk) = cos(βk/2) Re(Zk) + sin(βk/2) Im(Zk)

(−1)kIm(Xk) = − sin(βk/2) Re(Zk) + cos(βk/2) Im(Zk), (23)

The auxiliary quantities uk and vk become

uk = Re(Zk) + tan(βk/2) Im(Zk)

vk = −Re(Zk) + cot(βk/2) Im(Zk), (24)

and the optimum choice for a and b is

a

b
=

cot(βm/2) Re(Zm) + Im(Zm)

− tan(βm/2) Re(Zm) + Im(Zm)
. (25)

Complex Tone

As an alternative to eq.(1), consider a complex tone

xn = Cei(n−nc)ω, (26)

where C represents a complex amplitude. The DFT according to eq.(2) is

Xk = (−1)kC
sin(Nω/2)

sin[(βk − ω)/2]
. (27)

To derive a two-bin formula for a complex tone, we form the ratio

(−1)jXj

(−1)kXk

=
sin[(βk − ω)/2]

sin[(βj − ω)/2]
=

cos(ω/2) sin(βk/2)− sin(ω/2) cos(βk/2)

cos(ω/2) sin(βj/2)− sin(ω/2) cos(βj/2)
(28)
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which is easily solved for

tan(ω/2) =
(−1)jXj sin(βj/2)− (−1)kXk sin(βk/2)

(−1)jXj cos(βj/2)− (−1)kXk cos(βk/2)
. (29)

For adjacent bins j = k + 1 this expression becomes

tan(ω/2) =
Xk+1 sin(βk+1/2) +Xk sin(βk/2)

Xk+1 cos(βk+1/2) +Xk cos(βk/2)
. (30)
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