
Fast-Settling Filters

Martin Vicanek

January 1, 2025

1 Introduction

When measuring or tracking some slowly varying quantity in a noisy environment, one usually
applies a lowpass filter to suppress the noise, thereby achieving a steady, more accurate
reading. A desirable feature of the lowpass filter is that it should not ring nor creep, but
settle quickly. In this note I present a class of IIR filters with optimal step response.

2 Fast-Settling Filters in Continuous Time

Consider a second order continuous-time lowpass filter. Its response function in Laplace
space is given by [1]

H(s) =
ω2
0

ω2
0 + sω0/Q+ s2

. (1)

Here, s denotes the Laplace variable, ω0 is the cutoff frequency and Q is the quality factor.

The step response corresponding to the transfer function in eq.(1) is shown in figure 1 for
three values of Q. In order to facilitate a fair comparison, ω0 has been chosen in each case
such that the curves reach half the step size at the same time. We may call this time the
(effective) response time of a given filter. In other words, the time axis in figure 1 represents
the time normalized to each filter’s response time.

For Q > 1
2
the step response overshoots and possibly rings for some time before it settles,

whereas for Q < 1
2
it creeps more slowly than necessary towards steady state. Obviously

there is a trade-off between reaching the final value fast and accepting a certain amount of
overshoot.

This concept may be generalized for higher order lowpass filters. A lowpass of order 2K has
the following response in Laplace space:

H(s) =
K∏
k=1

ω2
k

ω2
k + sωk/Qk + s2

. (2)

Eq.(2) represents a number K second order lowpass filters in series, with cutoff frequencies
ωk and Q-factors Qk. The shape of the step response is determined by the values of the Qk

1



Figure 1: Step response of a second order lowpass filter, eq.(1), for various values
of the Q parameter. Time is normalized to the instant where the curves reach
half the step size.

and the ratios of the cutoff frequencies ωk/ω1. Hence, apart from an overall scaling, there
are 2K − 1 parameters which we may adjust to obtain a fast-settling filter. If we tolerate
an overshoot or ringing amplitude δ in units of the step height, then the step response with
fastest settling will exhibit 2K− 1 half oscillations after the first overshoot with exactly that
amplitude and then quickly reach steady state. This equiripple settling condition may be
used to determine the filter coefficients for a given ripple tolerance δ and filter order. The
following examples illustrate the point.

Figure 2 shows the ”fastest” step response for δ = 0.01 and various filter orders. The time
when the step response first crosses the step height (equal to 1 in figure 2) may be viewed as
the settling time. After the first crossing, the curves stay within the tolerance band specified
by δ with regard to the step height. Figure 3 zooms in on the settling stage. Obviously, the
settling time decreases with increasing filter order.

Figure 4 shows optimum step responses of an 8th order lowpass filter for different tolerance
levels. The curves look quite similar at this resolution. There is a mild increase in the settling
time when the tolerance bounds get tighter. Figure 5 Reveals more details of the settling
stage.

Figure 6 shows the settling time for various filter orders and tolerances. This summarizes
the results exemplified in figures 2 to 5: The settling time is considerably lower for higher
filter orders, especially so at small tolerance levels. For a given filter order, the settling time
increases with decreasing tolerance, as one would expect.

Table 1 lists filter parameters obtained for some selected values of δ and filter orders 2,4,6,
and 8 used in figures 2 to 6. The data has been obtained by a nonlinear optimization method
devised for that purpose. Values for ωk are normalized such that the filter response time is

2



Figure 2: Step response of optimum lowpass filters for 0.01 overshoot tolerance
and orders 2,4,6, and 8.

equal to 1.

3 Digital Implementation

The continuous-time filter may be implemented digitally using the bilinear transformation
(BLT)[2], preferrably using the SVF TPT topology [3]. The step response will be similar
provided that the cutoff frequencies are well below Nyquist. However, it is possible to design
a digital filter with exactly the same step response as the continuous-time filter. The method
may be called step invariance, similar to the familiar impulse invariance.

To this end, expand the response function in eq.(2) into partial fractions,

H(s) =
∑
k

(
Ak

s− sk
+

Ak

s− sk

)
, (3)

where sk and sk are the complex conjugate poles,

sk = − ωk

2Qk

+ iωk

√
1− 1

4Q2
k

, (4)

and Ak and Ak denote the respective residues,

Ak =
P

(sk − sk)
∏

j ̸=k(sk − sj)(sk − sj)
, P =

∏
k

ω2
k. (5)

The step response of H(s) in eq.(3) is the sum of step responses of each partial fraction. In
the appendix, we show the step-invariant transformation in detail. The resulting digital filter

3



Order 2

δ ω0 Q

10−2 1.525667 0.605265
10−3 1.596930 0.549280
10−4 1.629077 0.528286
10−5 1.645663 0.518281
10−6 1.655190 0.512764
10−7 1.661123 0.509409

Order 4

δ ω1 Q1 ω2 Q2

10−2 2.087833 0.583993 3.643149 1.527235
10−3 2.459946 0.547924 3.677486 0.959346
10−4 2.756932 0.529326 3.681537 0.762557
10−5 2.974557 0.519367 3.680945 0.669984
10−6 3.131173 0.513604 3.679869 0.618881
10−7 3.244468 0.510028 3.678854 0.587697

Order 6

δ ω1 Q1 ω2 Q2 ω3 Q3

10−2 2.490852 0.560085 3.873728 1.114950 6.002095 3.954038
10−3 2.890925 0.541045 4.112063 0.887498 6.096995 1.819061
10−4 3.327161 0.527289 4.345274 0.747157 6.060397 1.224078
10−5 3.716766 0.518842 4.553588 0.667584 6.002232 0.964593
10−6 4.043417 0.513570 4.731019 0.619855 5.947760 0.825152
10−7 4.310154 0.510145 4.878360 0.589433 5.902072 0.740695

Order 8

δ ω1 Q1 ω2 Q2 ω3 Q3 ω4 Q4

10−2 2.957235 0.542298 4.210168 0.896090 6.106563 1.844445 8.232505 10.51959
10−3 3.237222 0.534594 4.426414 0.815398 6.309273 1.469757 8.566109 3.388531
10−4 3.700966 0.524745 4.735882 0.721816 6.453059 1.138351 8.578797 1.956007
10−5 4.177915 0.517768 5.060828 0.657944 6.579305 0.939250 8.504146 1.405201
10−6 4.619034 0.513119 5.369818 0.616196 6.695730 0.817743 8.409878 1.126162
10−7 5.009863 0.509971 5.649021 0.588246 6.801813 0.739562 8.318633 0.962260

Table 1: Fast-settling lowpass filter coefficients.

4



Figure 3: Step response as in figure 2, zoomed in on the settling stage.

response is

H(z) =
∑
k

(
bkz

−1

1 + akz−1
+

bkz
−1

1 + akz−1

)
, (6)

where the coefficients ak and bk (and their c.c. counterparts ak and bk) are given in terms of
the complex poles sk,

ak = −eskT , bk = −Ak
1 + ak
skT

(7)

T denotes the sampling interval (inverse of the sample rate).

Equation (6) represents a sum of parallel filters, each with a single complex pole. A filter
with a single pole may be implemented recursively as

yk,n+1 = bkxn − akyk,n, (8)

where xn denotes the input stream of (real valued) samples for n = 1, 2, 3, . . ., and yk,n
the (complex valued) output stream of the kth filter. Splitting real and imaginary parts
ak = a′k + ia′′k and likewise for bk and yk,n yields two coupled equations

y′k,n+1 = b′kxn − a′ky
′
k,n + a′′ky

′′
k,n

y′′k,n+1 = b′′kxn − a′ky
′′
k,n − a′′ky

′
k,n. (9)

The single-pole filters come in c.c. pairs, so imaginary parts cancel and real parts double for
each c.c. pair, hence it is sufficient to consider only one of each c.c. poles and take twice the
sum of the real filter outputs 2

∑
k y

′
k,n.

5



Figure 4: Step response of optimum lowpass filters of order 8 for various overshoot
tolerance levels.

4 Discussion

We have seen that IIR filters — both continuous and discrete time — may be designed to
settle fast. One might ask why not take FIR filters in the first place, as these obviously settle
within a finite time. Moreover, FIR filters may easily be designed linear phase, and with
a step response that does not overshoot at all. One disadvantage is that FIR filters only
exist in the discrete time (i.e. digital) domain, but not in the continuous time (aka analog)
domain. Another drawback is that for low cutoff, which is quite typical in many applications,
FIR filters are computationally more expensive with respect to both CPU and and memory
requirements than IIR filters.

There is perhaps one exception, the running average and related filters [4, 5], which may
be evaluated recursively, hence of comparable efficiency as IIR filters. These filters are only
viable for integer kernel sizes, which means that not all cutoffs are possible.

It is interesting to note that the fast setting IIR filters presented here have a flat group
delay of approximately the response time over most of the passband. In fact they are similar
to Bessel filters, although not exactly the same. Another interesting and related aspect is
the (normalized) settling time. For strictly linear phase, it would be exactly 2. Figure 6
shows that for certain parameter choices, the settling time is even less than that. This is
somewhat surprising because the step response is, after all, a superposition of exponential
decays (with some oscillation) — objects with more or less long tails. The secret is in the
subtle interference, as a result of our equiripple settling condition.

6



Figure 5: Step response as in figure 4, zoomed in on the settling stage.

5 Conclusion

IIR filters with ideally fast settling properties have been presented for a range of design
parameters and choices. Such filters are computationally efficient and easy to implement once
the coefficients are known. Possible applications in audio processing include level meters and
envelope followers in general.

6 Appendix: Step-Invariant Transform

This section explains how to transform a continuous-time filter to a discrete-time (aka digital)
filter with the same step response. Here is the recipe:

1. Start with the filter response in Laplace space H(s). The step response is H(s)/s.

2. Transform this to the time domain.

3. Evaluate the result at sampling points nT and perform a z-transform with respect to
n.

4. Multiply the result with (1− z−1) to get the filter response in z-space.

We will apply this recipe to a single-pole filter

H(s) =
1

s− s0
. (10)

Here, the pole s0 may be complex, however its real part must be negative for stability. The
step response of the above is

H(s)

s
=

1

(s− s0)s
=

1

s0

(
1

s− s0
− 1

s

)
, (11)

7



Figure 6: Settling time in units of the effective response time for various filter
orders and tolerances.

Taking the inverse Laplace transform we obtain the step response in the time domain:

es0t − 1

s0
(12)

At sampling points nT this yields:

zn0 − 1

s0
, with z0 = es0T (13)

Taking the z-transform results in

1

s0

(
1

1− z0z−1
− 1

1− z−1

)
(14)

Multiplying this expression with 1− z−1 yields the filter response in z-space:

H(z) =
z0 − 1

s0

z−1

1− z0z−1
. (15)

The denominator (1 − z0z
−1) represents a single-pole filter, while the numerator z−1 ads a

delay by one sample. The term (z0 − 1)/s0 is just a constant factor.

References

[1] U. Tietze and Ch. Schenk, Halbleiter-Schaltungs-Technik, 16th ed. 2019, Chapter 12
Aktive Filter.

8



[2] Robert Bristow-Johnson, Audio EQ Cookbook. https://www.w3.org/TR/

audio-eq-cookbook/

[3] Vadim Zavalishin, The Art of VA Filter Design, rev. 2.1.2, 2020. https://www.

native-instruments.com/fileadmin/ni_media/downloads/pdf/VAFilterDesign_2.

1.2.pdf

[4] Geraint Luff, Cascaded box-filter smoothing filters, Signalsmith Audio Ltd. 2022. https:
//signalsmith-audio.co.uk/writing/2022/cascaded-box-filter-smoothing/

[5] M. Vicanek, Fast FIR Filters, in preparation, 2025.

9

https://www.w3.org/TR/audio-eq-cookbook/
https://www.w3.org/TR/audio-eq-cookbook/
https://www.native-instruments.com/fileadmin/ni_media/downloads/pdf/VAFilterDesign_2.1.2.pdf
https://www.native-instruments.com/fileadmin/ni_media/downloads/pdf/VAFilterDesign_2.1.2.pdf
https://www.native-instruments.com/fileadmin/ni_media/downloads/pdf/VAFilterDesign_2.1.2.pdf
https://signalsmith-audio.co.uk/writing/2022/cascaded-box-filter-smoothing/
https://signalsmith-audio.co.uk/writing/2022/cascaded-box-filter-smoothing/

	Introduction
	Fast-Settling Filters in Continuous Time
	Digital Implementation
	Discussion
	Conclusion
	Appendix: Step-Invariant Transform

