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1 Introduction

In digital signal processing, finite impulse response (FIR) filters have some advantages over
their infinite impulse response (IIR) counterparts:

1. they can be designed with steep transition bands

2. they can be designed to have constant group delay (linear phase)

3. they recover from invalid input (IIRs will output NaNs forever)

4. they don’t suffer from denormals

In some applications, the finite impulse response is a desirable feature in itself.

The main drawbacks are (i) a lack of closed design formulas for standard filter types and
(ii) high CPU load. The latter may be addressed using FFT, however in its simple form it
introduces additional delay of one block size.

In this article I examine a class of FIR filters with simple design rules and a low CPU load.
These filters may be of interest in audio applications like envelope followers, compressors,
band splitters, onset detectors etc.

2 Some Filter Basics

Consider a stream of (real valued) samples xn with n = 0, 1, 2, . . . At each instant in time
tn = nT , where T is the sampling interval, we may perform a weighted sum over the last N
samples to obtain a transformed (or filtered) stream yn,

yn =
N−1∑
k=0

hkxn−k. (1)

If the incoming stream was an impulse, i.e. all samples equal to zero except x0 = 1, the
resulting yn would be equal to the weights hn for n < N and zero otherwise. Hence the
weights hk in eq.(1) constitute the impulse response (IR). Since there are only N weights,
the filter defined by eq.(1) has a finite impulse response (FIR).
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A more general class of filters includes, in addition to the last N incoming samples xn−k,
another term with previous transformed samples yn−k. In most (but not all!) cases such
iterative filters have an infinite impulse response (IIR). It is common, though somewhat
inaccurate, to call these filters IIR-filters.

Filters are characterized by their response function in the frequency domain. For digital
filters, this is given by the z-transform of the impulse response,

H(z) =
∑

hnz
−n, (2)

where z = eiωT encodes the (angular) frequency ω. In the following, we will use T as the
unit of time, so −π < ω ≤ π spans the Nyquist interval.

The expression on the right hand side of eq.(1) is a convolution. Straight evaluation results
in O(N) operations per sample. It is possible to use the fast Fourier transform (FFT) to
perform that task in blocks with a reduced complexity O(log(N)), however, at the price of an
extra delay corresponding to the block size. On can go a step further and use an arrangement
of blocks with different sizes to minimize or even remove that latency [1]. Indeed, this is the
preferred if not the only viable option to implement convolution reverbs.

This article treats a much simpler case, where the IR exhibits a special form of self-similarity,
thereby allowing an efficient evaluation of the sum in eq.(1).

3 Running Sum

The simplest case of a FIR filter is the so-called running sum, where all hk are equal to 1:

yn =
N−1∑
k=0

xn−k (3)

The summation may be evaluated using the previous result for yn−1:

yn = yn−1 + xn − xn−N . (4)

The right hand side of eq.(4) has only three terms independent of the IR size N , hence may
be computed much more efficiently than the original eq.(3). Even though only xn and xn−N

enter in eq.(4), all N intermediate samples xn−k have to be stored along the way because
each will be needed in a subsequent evaluation.

There is a small caveat in floating point implementations of eq.(4) that rounding errors
accumulate over time, resulting in the expression above drifting away from the actual running
sum. This may be mitigated by periodically resetting the value. A simple way to do that is
compute, in parallel, a reference

rn = rn−1 + xn (5)

and reset
yn = rn, rn = 0 (6)
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every N samples. There is no need to store all rn along the way, as we only require the final
result to update yn after having accumulated N samples.

Figure 1: Impulse responses of a moving average filter (red) with N = 50, and a
leaky integrator (green) yn = 0.98 yn−1 + 0.02xn for comparison.

Figure 2: Magnitude responses of a moving average filter (red) and a leaky inte-
grator (green).

The running average, also known as moving or sliding average, may be trivially obtained
from the running sum by applying a factor 1/N to each sample of either the input or output
stream. The running average may be viewed as a smoothing or lowpass filter with magnitude
response

|H(z)| = 1

N

| sin(N
2
ω)|

sin(1
2
ω)

. (7)

At DC (z = 1 or ω = 0), the response is equal to 1 (zeros of numerator and denominator
cancel). There are equally spaced zeros (i.e. notches) at frequencies ω = 2π

N
, 4π
N
, . . . The
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magnitude in between the zeros falls off at 6 dB per octave except near Nyquist where it
flattens out. Figure 1 shows the impulse response for N = 50, compared to that of a leaky
integrator yn = 0.98 yn−1 + 0.02xn. Figure 2 shows the corresponding magnitude responses.

The running average filter has a constant group delay (aka latency) of N−1
2

samples.

4 Sliding Goertzel

The above concept of using previous filter evaluations may be generalized to include expres-
sions of the form

yn =
N−1∑
k=0

qkxn−k (8)

where q is some (potentially complex valued) parameter. The sum in eq.(8) may be evaluated
from the previous sum yn−1,

yn = qyn−1 + xn − qNxn−N . (9)

Eq.(9) is a generalization of eq.(4). For |q| < 1 this recurrence scheme is stable and may be
used directly, otherwise compute in parallel

rn = qrn−1 + xn (10)

and reset yn and rn every N samples as in eq.(6).

The particular choice q = eiω0 leads to a sliding variant of the Goertzel tone detector [2]. If
we split up the response into real and imaginary parts, yn = un + ivn, then eq.(8) becomes

un =
N−1∑
k=0

cos(kω0)xn−k vn =
N−1∑
k=0

sin(kω0)xn−k (11)

and from eq.(9) we obtain a set of recursive equations

un = cos(ω0)un−1 − sin(ω0) vn−1 + xn − cos(Nω0)xn−N

vn = sin(ω0)un−1 + cos(ω0) vn−1 − sin(Nω0)xn−N . (12)

Usually the IR will encompass some integer or half integer number k of cycles, Nω0 = 2πk.
The corresponding filter will have a bandpass characteristic with the passband centered
around ω0. The relative bandwidth is inversely proportional to the number of cycles k.
Figure 3 and 4 show the impulse and (normalized) magnitude responses, respectively, of the
real and imaginary parts un and vn of a sliding Goertzel filter with IR length N = 100 and
k = 6 full cycles.
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Figure 3: Real (red) and imaginary (green) impulse responses un and vn of a
sliding Goertzel filter, refer to eq.(11). IR length is N = 100, and ω0 was chosen
to fit k = 6 full cycles.

Figure 4: Magnitude responses of real (red) and imaginary (green) sliding Go-
ertzel filter ouputs un and vn, respectively. Same parameters as in figure 3.

For k = 1
2
, i.e. ω0 = π/N , the imaginary IR vn is a half-sine, refer to the second eq.(11) and

the orange curve in figure 5. If we use vn in eq.(12) as a filter output, we get a lowpass filter
with magnitude response

|H(z)| = 1

2

∣∣∣∣∣sin[N2 (ω − ω0)]

sin[1
2
(ω − ω0)]

+
sin[N

2
(ω + ω0)]

sin[1
2
(ω + ω0)]

∣∣∣∣∣ . (13)

The expression in eq.(13) has zeros at ω = 3π
N
, 5π
N
, 7π
N
, . . ., and the falloff is 12 dB per octave.

This is illustrated by the orange curve in figure 6. Latency is N−1
2

samples.
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5 Composite Filter Structures

Figure 5: Impulse responses of various smoothing filters: box (red), half-sine
(orange), Hann (green), and sin3 (magenta). IR length is N = 128 in all cases.

Figure 6: Normalized magnitude responses of various smoothing filters: box (red),
half-sine (orange), Hann (green), and sin3 (magenta). Same parameters as in
figure 5.

Because the filter evaluation according to eqs.(4) or (12) is still quite efficient and independent
of filter size N , we can afford to combine several such filters to better achieve a given design
goal. I will discuss smoothing filters as an example, but the concept may be easily applied
to other prototypes as well.

The simplest smoothing filter is the running average filter (or box filter for short) introduced
in section 3. If we cascade two box filters in series, we get a two times steeper falloff, i.e. 12
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dB per octave. However, the resulting latency will be twice the latency of a single box filter.
To compensate for it, we may take two box filters of length N

2
each.

Figure 7: Impulse responses of two smoothing filters: two box filters in series
(red), and a half-sine filter (green). Total IR length is N = 128 in both cases.

Figure 8: Normalized magnitude responses of two smoothing filters as in figure
7.

The cascaded box filter may be compared to the half-sine filter of the same length, refer
to figures 7 and 8. Both have a 12 dB per octave roll-off, however the attenuation of the
half-sine filter is slightly better by some 4 dB. The iteration scheme for the half-sine, eq.(12)
is slightly more complex than eq.(4) for the box filter, even if the latter has to be run twice
for two box filters in series. Another consideration is that the filter size has to be integer,
which leaves a finer grid for the half-sine filter.
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Figure 9: Impulse responses of two smoothing filters: three box filters in series
(red), and Hann filter (green). Total IR length is N = 129 in both cases.

Figure 10: Normalized magnitude responses of two smoothing filters as in figure
9.

Another option to facilitate more flexible IRs is to use filters in parallel. For example, the
bell-shaped IR

hn = 1− cos(nω0) with ω0 =
2π

N
(14)

may be implemented as a box filter in parallel with a sliding Goertzel tapped at the real
output un in eq.(12), subtracting the latter from the box filter output. Because eq.(14)
represents a Hann window, we may call the corresponding filter a Hann filter. The roll-off
is 18 dB per octave, and notches are at ω = 4π

N
, 6π
N
, 8π
N
, . . . Compared to three box filters in

series with same total length (refer to figures 9 and 10), it has 9 dB more attenuation.
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Figure 11: Impulse responses of three smoothing filters: four box filters in series
(red), two half-sine filters in series (orange), and a sin3 filter (green). Total IR
length is N = 128 in all three cases.

Figure 12: Magnitude responses of three smoothing filters as in figure 11.

An IR even closer to a Gaussian than the Hann window is given by

hn = sin3(nω0)

= 3
4
sin(nω0)− 1

4
sin(3nω0) with ω0 =

2π

N
(15)

The corresponding filter, called sin3-filter, may be implemented as a weighted sum of two
parallel sliding Goertzel filters tapped at the imaginary output each. That filter has a 24 dB
per octave roll-off and notches at ω = 5π

N
, 7π
N
, 9π
N
, . . .. The impulse and magnitude responses

of the sin3 filter are shown in figures 11 and 12, respectively, together with other similar
filters. Compared to four box filters in series with same total length (also 24 dB per octave),
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attenuation is better by 13 dB. It may also be compared to two half-sine filters in series with
equal total length (likewise 24 dB per octave). Attenuation of the sin3-filter is still better by
5 dB.

The outlined scheme allows for many possible variations to play with. For instance, one
may cascade filters of different lengths to trade first side-lobe attenuation against stop-band
suppression further out [3], or likewise adjust the weights in parallel structures (refer to Hann
vs. Hamming window).

6 Discussion

A class of FIR filters has been examined that allow efficient recursive implementation. Cor-
responding filter kernels may be constant, exponentials, sines or cosines. By combining two
or more such filters, more complex kernels may be created. Linear phase is easily achieved by
choosing a symmetric kernel. Specific time domain requirements, such as avoiding overshoots,
may easily be taken into account.
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