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Abstract

Complex waveshapers take a sine and cosine wave pair as input and deliver two
output waves F and G with different shapes but identical harmonic intensities, which
follow from a Taylor expansion of the shaper function. F and G form a Hilbert pair,
hence their partial frequencies may be shifted to produce sounds with other harmonic
relationships. A number of examples are presented.

1 Introduction

Waveshaping [1] is a technique used in audio processing to alter the harmonic content
and possibly also the dynamic range of a given signal. In the simplest case, a sine
wave is transformed to a more complex waveform with some harmonic spectrum.

Waveshaping functions may be of arbitrary form in principle. The most common
ones display linear behavior for small signal amplitudes and then gradually saturate
as the amplitude increases. However, in some synths a particular timbre is achieved
with a shaping function which folds back at some point [2] .

If we allow for simultaneous sine and cosine input, we may enlarge the variety
of possible waveforms. Moreover, if the shaping function is complex and analytic,
the real and imaginary outputs will form a Hilbert pair of waveforms with different
shapes but identical harmonic intensities.

2 Harmonic series and generating functions

Consider a complex analytic function H(z) with a known Taylor series expansion for
z within the region of convergence,

H(z) =
∞∑
n=0

bnz
n. (1)

If we substitute reiωt for z, then obviously

H(reiωt) =

∞∑
n=0

bnr
neinωt.
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Using Euler’s identity eiϕ = cosϕ + i sinϕ for each term einωt in eq.(1), we can
evaluate the real and imaginary parts, respectively, to obtain

Re(H) =

∞∑
n=0

bnr
n cos(nωt), Im(H) =

∞∑
n=0

bnr
n sin(nωt).

Hence the Taylor expansion coefficients bn of the generating functionH are essentially
the harmonic series coefficients.

In musical applications we usually do not want a DC bias, so we need to get rid
of the term with n = 0. Furthermore, we wish to normalize the outputs so that the
amplitude of the fundamental is unity. To this end, define functions F and G as

F =
Re(H)− b0

b1r
, G =

Im(H)

b1r
. (2)

With this definition, we obtain the following harmonic series expansions

F =

∞∑
n=1

an cos(nωt), G =

∞∑
n=1

an sin(nωt), (3)

where the partial intensities are given by

a0 = 0, a1 = 1, an = bnr
n−1/b1, n = 2, 3, 4, . . . (4)

Given a complex function H(z), equation (2) provides a scheme to generate wave-
forms with a harmonic spectrum given by the Taylor series coefficients of H(z), by
applying functions F or G to the sine and cosine outputs of a quadrature oscillator.
In this sense, F and G act as the real and imaginary parts of a complex waveshaper.
In the following sections we will examine some simple, closed-form waveshapers.

3 Examples of waveshapers

3.1 Geometric series

A simple generating function is H(z) = 1/(1 − z), which has a geometric series
expansion,

H(z) =
1

1− z
=

∞∑
n=0

zn. (5)

i.e., bn = 1 for all n. H(z) may be written in terms of its real and imaginary parts,

H(z) =
1− x+ iy

(1− x)2 + y2
, where z = x+ iy.

Let r be a real number with |r| < 1. Substitute reiωt for z, then

H =
1

1− reiωt
=

1− rc+ irs

1 + r2 − 2rc
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where we have used abbreviations c = cosωt and s = sinωt. The expression on the
right hand side makes it easy to identify the real and imaginary part, respectively,

Re(H) =
1− rc

1 + r2 − 2rc
,

Im(H) =
rs

1 + r2 − 2rc
.

Hence, if we drop the DC term and rescale, we arrive at the waveforms

F =
c− r

1 + r2 − 2rc
, bounds

−1

r ± 1
, (6)

G =
s

1 + r2 − 2rc
, bounds

±1

1− r2
. (7)

and the partials amplitudes are

an = rn−1, n = 1, 2, 3, . . . (8)

The fundamental frequency has unity amplitude, and higher harmonics fall off ge-
ometrically as rn−1. For r = 0 there are no higher harmonics. For r approaching
unity, r = 1− ϵ with ϵ ≪ 1, partial amplitudes remain nearly constant up to n ≈ 1/ϵ
and then fall off for higher n. The resulting waveforms are simple rational functions.
The lower and upper bounds for F are −1/(1 + r) and 1/(1 − r), respectively, and
±1/(1− r2) for G. Obviously the sine series results in a symmetric waveform F with
a smaller crest factor than the cosine series waveform G.

Figure 1 shows two cycles of waveforms F and G, respectively, for selected values
r = 0, 0.5, 0.7, and 0.8. Figure 2 depicts the corresponding partial amplitudes.

Figure 1: Geometric series waveforms, eqs.(6) and (7).
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Figure 2: Geometric series partial amplitudes, eq.(8).

3.2 Exponential

Take H(z) = ez as the generating function, with the well-known series expansion

H(z) = ez =

∞∑
n=0

zn

n!
= ex(cos y + i sin y). (9)

Substitute reiωt for z, with r being a real number without any particular bound.
Performing the same manipulations as in the previous section, we arrive at

F =
cos(rs) exp(rc)− 1

r
, (10)

G =
sin(rs) exp(rc)

r
. (11)

Unfortunately, there is no closed form for the bounds. The partials amplitudes are

an =
rn−1

n!
, n = 1, 2, 3, . . . (12)

Figure 3 shows F and G waveforms for r = 0, 1, 2, and 3. Corresponding partial
amplitudes are shown in figure 4. For |r| > 1 the first few partials an are stronger
than the fundamental a1 but then fall of very quickly (note the abscissa scale in figure
4).
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Figure 3: Exponential series waveforms, eqs.(10) and (11).

Figure 4: Exponential series partial amplitudes, eq.(12).

3.3 Logarithm

Consider the generating function [3, 4]

H(z) = − ln(1− z) =
∞∑
n=1

zn

n

= −1
2 ln

(
(1− x)2 + y2

)
+ i arctan

y

1− x
. (13)

Let r be a real number with |r| < 1 and perform the above algebraic steps to obtain

F = − ln(1 + r2 − 2rc)

2r
, bounds ln(1± r)/r, (14)

G =
1

r
arctan

rs

1− rc
, bounds ± arcsin(r)/r. (15)

The partials amplitudes are

an =
rn−1

n
. (16)
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Figures 5 and 6 show waveforms and partial amplitudes for selected values of r. Since
|r| < 1, partials are always decreasing with increasing n. Note that the limiting case
r → 1 results in a 1/n spectrum. In that case, G represents a saw-tooth wave, refer
to the right figure 5.

Figure 5: Logarithmic series waveforms, eqs.(14) and (15).

Figure 6: Logarithmic series partial amplitudes, eq.(16).

3.4 Power

Consider the generating function [3, 4]

H(z) = (1 + z)µ =

∞∑
n=0

(
µ

n

)
zn

=
(
(1 + x)2 + y2

)µ
2 (cos ν + i sin ν), where ν = µ arctan

y

1 + x
, (17)
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with some real number µ. Let r be another real number with |r| < 1, then we get

F =
(1 + r2 + 2rc)

µ
2 cos ν − 1

µr
, (18)

G =
(1 + r2 + 2rc)

µ
2 sin ν

µr
, (19)

with
ν = µ arctan

rs

1 + rc
.

The partials amplitudes are

an =

(
µ

n

)
rn−1

µ
, n = 1, 2, 3, . . . (20)

For integer and half-integer powers µ, alternative formulas may be derived, avoiding
trigonometric functions. For positive integers µ = m, the harmonic series terminates
at the mth partial.

Figures 7–10 show examples for powers µ = −0.2 and µ = 5, and selected values
for r. It is interesting to note that for large powers |µ| ≫ 1, the formulas approach
exponential behavior, whereas for small powers |µ| ≪ 1, the results resemble loga-
rithmic behavior.

Figure 7: Power mu = −0.2 series waveforms, eqs.(18) and (19).

7



Figure 8: Power mu = −0.2 series partial amplitudes, eq.(20).

Figure 9: Power mu = 5 series waveforms, eqs.(18) and (19).

Figure 10: Power mu = 5 series partial amplitudes, eq.(20).
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3.5 Sine

Consider the generating function [3, 4]

H(z) = sin z =
∞∑
n=0

z2n+1

(2n+ 1)!

= sinx cosh y + i cosx sinh y. (21)

The F and G waveforms are

F =
sin(rc) cosh(rs)

r
, (22)

G =
cos(rc) sinh(rs)

r
, bounds ± sinh r

r
. (23)

and the partial amplitudes are

an =

{
0 if n is even

rn−1/n! if n is odd
(24)

Note that odd partials coincide with the exponential case, refer to eq.(12).

Figure 11: Sine series waveforms, eqs.(22) and (23).
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Figure 12: Sine series partial amplitudes, eq.(24).

3.6 Tangent

Consider the generating function [3, 4]

H(z) = tan z = z +
z3

3
+

2z5

15
+

17z7

315
+ · · · , |z| < π

2

=
sin 2x+ i sinh 2y

cos 2x+ cosh 2y
(25)

The F and G waveforms are

F =
sin 2rc

r(cos 2rc+ cosh 2rs)
, bounds ± tan r

r
, (26)

G =
sinh 2rs

r(cos 2rc+ cosh 2rs)
. (27)

and the partial amplitudes are

a1 = 1, a3 =
r2

3
, a5 =

2r4

15
, a7 =

17r6

315
, . . . (28)

Note that even partials are zero. Odd partials are always decreasing for |r| < π
2 .

Figures 13 and 14 show examples.
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Figure 13: Tangent series waveforms, eqs.(26) and (27).

Figure 14: Tangent series partial amplitudes, eq.(28).

3.7 Arctangent

Consider the generating function [3, 4]

H(z) = arctan z =
∞∑
n=0

(−1)nz2n+1

(2n+ 1)
, |z| < 1

=
1

2
arctan

2x

1− x2 − y2
+

i

4
ln

x2 + (y + 1)2

x2 + (y − 1)2
. (29)

The F and G waveforms are

F =
1

2r
arctan

2rc

1− r2
, bounds ± arctan r

r
, (30)

G =
1

4r
ln

1 + r2 + 2rs

1 + r2 − 2rs
, bounds ± 1

2r
ln

1 + r

1− r
, (31)
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with |r| < 1. The partial amplitudes are

an =

{
0 if n is even

rn−1/n if n is odd.
(32)

Odd partials coincide with the logarithmic case, refer to eq.(16). For the limiting
case r → 1, the F waveform becomes rectangular, refer to left figure 15.

Figure 15: Arctangent series waveforms, eqs.(30) and (31).

Figure 16: Arctangent series partial amplitudes, eq.(32).

4 Discussion

The few examples in section 3 already show some distinct features:

• increasing partial amplitudes with increasing parameter r (note that r is some-
times bound)

12



• monotonic or non-monotonic partial amplitudes
• finite or infinite number of partials
• even partials missing or present

Since the partial amplitudes determine the timbre of a wave sound, the method allows
for a rich set of timbres. The r parameter is akin to a lowpass filter cutoff. Of the
two waveforms F and G, we may choose the one with a favorable crest factor to avoid
clipping, or the one which starts with zero amplitude to avoid clicks, etc. A linear
combination is also possible.

4.1 Hilbert property

F and G are Hilbert pairs [5], hence partials can be shifted by means of a quadrature
oscillator with frequency ω′,

F cosω′t−G sinω′t =
∞∑
n=1

an cosωnt (33)

F sinω′t+G cosω′t =
∞∑
n=1

an sinωnt (34)

with ωn = nω + ω′.
In general, the resulting sound will be anharmonic because the shifted partial

frequencies ωn are no longer at integer ratios. However, some special cases are notable
exceptions. For instance shift down by ω′ = −2

3ω will create a new fundamental at
ω1 = 1

3ω, first nonzero partial will be at ω2 = 4
3ω = 4ω1 (2 octaves up), next at

7ω1 and so on. Such timbres with sparse partials are typical of instruments like
vibraphone, glockenspiel, chimes, etc.

4.2 Aliasing suppression

Music production is entirely digital today, which means that signals are sampled
and processed at discrete times tn with a certain rate, the sampling rate. During
processing, frequency components may arise which exceed the Nyquist limit, resulting
in an unwanted artifact called aliasing. Various mitigation strategies exist, of which
the most important are oversampling and ADAA [6, 7]

The idea of oversampling consists in processing at a higher sampling rate, hence
pushing the Nyquist limit up for more headroom. Usually this involves first upsam-
pling the signal at hand, then processing, and finally downsampling. In the present
case we may skip the first step and generate the sin/cos inputs at a higher rate and
feed them into H. No upsampling interpolation is needed.

The acronym ADAA stands for antiderivative anti-aliasing. The classical scheme
involves four steps: (i) transform to continuous time by linear interpolation, (ii) carry
out the processing, (iii) apply a boxcar filter of one sample width, and (iv) sample the
result to get back to discrete time domain. Since waveforms F and G are known in
continuous time domain, the first step may be omitted, and filtering can be applied
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directly. For instance a boxcar filter acting on H would be implemented as

H(zn)−H(zn−1)

zn − zn−1
, (35)

where zn = reiωtn and H(z) is the (complex) antiderivative of H(z),

H(z) =

∫ z

H(z′)dz′.

So to ADAA a complex wave shaper, use the expression (35) instead of H(zn).

References

[1] https://en.wikipedia.org/wiki/Waveshaper

[2] Fabián Esqueda, Henri Pöntynen, Vesa Välimäki, and Julian D. Parker, Virtual
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