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1 Introduction

In digital audio processing, equalization is used as an enhancement or suppression of certain
frequencies in order to compensate for spectral distortions in the transmission chain, or to
account for room acoustics, or simply for personal preference. Filtering is often performed
with recursive digital filters, aka IIR filters. Common designs of such filters often have an
unwanted transfer function cramping towards high frequencies. This is shown in figure 1.

Figure 1: Magnitude responses of various high-shelf filters. Solid lines: digital
filter using bi-linear transform. Dashed lines: analog prototype. In all cases the
high-shelf gain is 20 dB.
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In this note I present a design scheme for the specific class of second order Butterworth
shelving filters, with the objective to closely match the magnitude transfer curve of its analog
counterpart.

2 Shelving Filters

Shelving filters have some gain factor G0 for low frequencies, some other gain factor G1 for
high frequencies, and a transition region around some characteristic frequency fc. For the
sake of definiteness consider a high-shelf with G0 = 1. Since G1 is the only remaining gain
parameter, we may omit the subscript and simply use G for the high shelf gain. In the analog
domain, the transfer function of a second order Butterworth high-shelf filter is [1]

H(s) =
1 +

√
2gs+ g2s2

1 +
√
2s/g + s2/g2

, (1)

where g = G
1
4 , s = if/fc, i =

√
−1 and f is the frequency. A Butterworth filter has, for

a given filter degree, the sharpest possible passband-stopband transition without overshoots
or ripples in the magnitude response.

In the digital domain, a general second order filter (aka biquad) has a transfer function

H(z) =
b0 + b1z

−1 + b2z
−2

a0 + a1z−1 + a2z−2
(2)

where z = exp(iπf). We have chosen to denote the frequency f in units of the Nyquist
frequency. Furthermore, we are free to choose a0 = 1.

Given the filter specification in terms of fc and G, the objective is to find suitable filter
coefficients a1, a2, b0, b1, and b2 so that the magnitudes of the analog and the digital filter
match.

3 Filter Design

Take the modulus squared of transfer function in equation (2). The result may be written as
[2]

|H(z)|2 = B0(1− ϕ) +B1ϕ+ 4B2ϕ(1− ϕ)

A0(1− ϕ) + A1ϕ+ 4A2ϕ(1− ϕ)
(3)

Here we have introduced
ϕ = sin2(π

2
f) (4)

as a monotonic function of f , which goes from 0 at f = 0 (or DC for short) to 1 at the
Nyquist frequency f = 1. The A0, A1, A2 and B0, B1, B2 coefficients in eq.(3) are related to
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the a0, a1, a2 and b0, b1, b2 coefficients in eq.(2) by the following set of equations [2]:

V = 1
2

(√
A0 +

√
A1

)
W = 1

2

(√
B0 +

√
B1

)
a0 =

1
2

(
V +

√
V 2 + A2

)
b0 =

1
2

(
W +

√
W 2 +B2

)
a1 = 1− V b1 = 1−W

a2 = −1
4
A2/a0 b2 = −1

4
B2/b0 (5)

We may re-normalize all ai and bi coefficients by dividing them by a0 without changing the
result in eq.(2).

As the first matching condition, we require the DC filter magnitude response to be unity,
which results in A0 = B0. We are free to choose A0 = B0 = 1.

Since both the numerator and denominator in eq.(3) are second order polynomials of ϕ, we
may write it in a slightly different form,

|H(z)|2 = 1− ϕ+ β1ϕ(1− ϕ) + β2ϕ
2

1− ϕ+ α1ϕ(1− ϕ) + α2ϕ2
, (6)

where αi and βi are related to the Ai and Bi coefficients, respectively, by

A1 = α2 A2 =
1
4
(α1 − α2)

B1 = β2 B2 =
1
4
(β1 − β2) (7)

Our second matching condition will be maximum flatness of the filter magnitude response
at DC, as is the case for a Butterworth filter. Technically, this means that |H(z)|2 has zero
slope in terms of ϕ at ϕ = 0, which translates to

β1 = α1. (8)

A third condition is that the magnitude response of the digital filter shall match the analog
value at Nyquist frequency. Evaluating, thus, eq.(6) at ϕ = 1 yields

β2 = hNyα2, (9)

where hNy is the magnitude squared at Nyquist. From eq.(1) we obtain an expression for hNy

in terms of the filter design parameters fc and G,

hNy =
f 4
c +G

f 4
c + 1/G

. (10)

Up to now, we have imposed three conditions on the biquad filter response. As a result, we
can use equations (8) and (9) to eliminate β1 and β2 from eq.(6). This leaves us with two
remaining parameters α1 and α2, which will be determined by two more matching require-
ments at some frequencies f1 and f2. These two matching points should be chosen to warrant
a good match across the entire Nyquist interval. A particular challenge is to make sure that
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all roots in eq.(5) be real. Based on a thorough numerical analysis, the author proposes the
following choice:

f1 =
fc√

0.160 + 1.543f 2
c

, f2 =
fc√

0.947 + 3.806f 2
c

. (11)

Eq.(11) ensures that f1 and f2 always remain below Nyquist, even for fc above Nyquist.

Applying the matching conditions at f1 and f2 is straightforward and leads to a set of linear
equations for α1 and α2,

c11α1 + c12α2 = d1

c21α1 + c22α2 = d2, (12)

where the cij and di are given by

d1 = (h1 − 1)(1− ϕ1) d2 = (h2 − 1)(1− ϕ2)

c11 = −ϕ1d1 c21 = −ϕ2d2

c12 = (hNy − h1)ϕ
2
1 c22 = (hNy − h2)ϕ

2
2 (13)

The abbreviations ϕi and hi denote the following expressions:

ϕ1 = sin2(π
2
f1) ϕ2 = sin2(π

2
f2)

h1 =
f 4
c + f 4

1G

f 4
c + f 4

1 /G
h1 =

f 4
c + f 4

1G

f 4
c + f 4

1 /G
(14)

Eq.(12) is easily solved for α1 and α2,

α1 =
c22d1 − c12d2
c11c22 − c12c21

, α2 =
d1 − c11α1

c12
. (15)

Having determined α1 and α2, we can use equations (8) and (9) to calculate β1 and β2. Then,
eq.(7) yields the quantities Ai and Bi, which in turn determine the biquad coefficients ai and
bi using eq.(5).

Figure 2 shows some magnitude responses as proposed in this work in comparison to the
analog high-shelf filter responses, respectively. The overall agreement is fair, with deviations
at high frequencies when the center frequency is close to Nyquist. These deviations never
exceed 1 dB for a shelf gain of 20 dB. Note that the matching scheme also works for shelves
with center frequencies above Nyquist.

4 Other Filter Types

The results of the previous section may be applied to other filter types with some adaptation.
For instance, a low-shelf filter may be viewed as a high shelf filter with gain 1/G instead of
G and the bi coefficients scaled by G to ensure unity gain at high frequencies.

In order to facilitate use of the derived formulas, we present pseudo-codes in the appendix
for an implementation of high- and low-shelf filters.
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Figure 2: Magnitude responses of various high-shelf filters. Solid lines: present
work. Dashed lines: analog prototype.

5 Conclusion

In this article we provide closed-form expressions for the design of second-order digital shelv-
ing filters. The resulting magnitude transfer functions match the analog prototype quite well
over the entire audio range, even for fc above Nyquist.
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A Pseudocodes

A.1 Matched High Shelf Filter

// Matched 2-Pole Butterworth High Shelf Filter

// --------------------------------------------

// Inputs:

// fc (center frequency/ Nyquist frequency)

// gain (shelf gain factor)

// Outputs:

// a1, a2, b0, b1, b2 (biquad filter coefficients)

// special case gain = 1 (flat response)

if ( abs(1 - gain) < 1e-6 ) then

g = 1.00001

else

g = gain

// abbreviations

pihalf = 1.5708

invg = 1.0/g

// matching gain at Nyquist

fc4 = fc^4

hny = (fc4 + g)/(fc4 + invg)

// matching gain at f_1

f1 = fc/sqrt(0.160 + 1.543*fc*fc)

f14 = f1^4

h1 = (fc4 + f14*g)/(fc4 + f14*invg)

phi1 = sin(pihalf*f1)^2

// matching gain at f_2

f2 = fc/sqrt(0.947 + 3.806*fc*fc)

f24 = f2^4

h2 = (fc4 + f24*g)/(fc4 + f24*invg)

phi2 = sin(pihalf*f2)^2

// linear equations coefficients

d1 = (h1 - 1.0)*(1.0 - phi1)

c11 = -phi1*d1

c12 = phi1*phi1*(hny - h1)
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d2 = (h2 - 1.0)*(1.0 - phi2)

c21 = -phi2*d2

c22 = phi2*phi2*(hny - h2)

// linear equations solution

alfa1 = (c22*d1 - c12*d2)/(c11*c22 - c12*c21)

aa1 = (d1 - c11*alfa1)/c12

bb1 = hny*aa1

// compute A_2 and B_2

aa2 = 0.25*(alfa1 - aa1)

bb2 = 0.25*(alfa1 - bb1)

// compute biquad coefficients scaled with 1/a_0

v = 0.5*(1.0 + sqrt(aa1))

w = 0.5*(1.0 + sqrt(bb1))

a0 = 0.5*(v + sqrt(v*v + aa2))

inva0 = 1.0/a0

a1 = (1.0 - v)*inva0

a2 = -0.25*aa2*inva0*inva0

b0 = (0.5*(w + sqrt(w*w + bb2)))*inva0

b1 = (1.0 - w)*inva0

b2 = (-0.25*bb2/b0)*inva0*inva0
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A.2 Matched Low Shelf Filter

// Matched 2-Pole Butterworth Low Shelf Filter

// -------------------------------------------

// Inputs:

// fc (center frequency/ Nyquist frequency)

// gain (shelf gain factor)

// Outputs:

// a1, a2, b0, b1, b2 (biquad filter coefficients)

// special case gain = 1 (flat response)

if ( abs(1 - gain) < 1e-6 ) then

g = 1.00001

else

g = 1.0/gain

// abbreviations

pihalf = 1.5708

invg = 1.0/g

// matching gain at Nyquist

fc4 = fc^4

hny = (fc4 + g)/(fc4 + invg)

// matching gain at f_1

f1 = fc/sqrt(0.160 + 1.543*fc*fc)

f14 = f1^4

h1 = (fc4 + f14*g)/(fc4 + f14*invg)

phi1 = sin(pihalf*f1)^2

// matching gain at f_2

f2 = fc/sqrt(0.947 + 3.806*fc*fc)

f24 = f2^4

h2 = (fc4 + f24*g)/(fc4 + f24*invg)

phi2 = sin(pihalf*f2)^2

// linear equations coefficients

d1 = (h1 - 1.0)*(1.0 - phi1)

c11 = -phi1*d1

c12 = phi1*phi1*(hny - h1)

d2 = (h2 - 1.0)*(1.0 - phi2)

c21 = -phi2*d2
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c22 = phi2*phi2*(hny - h2)

// linear equations solution

alfa1 = (c22*d1 - c12*d2)/(c11*c22 - c12*c21)

aa1 = (d1 - c11*alfa1)/c12

bb1 = hny*aa1

// compute A_2 and B_2

aa2 = 0.25*(alfa1 - aa1)

bb2 = 0.25*(alfa1 - bb1)

// compute biquad coefficients scaled with 1/a_0

v = 0.5*(1.0 + sqrt(aa1))

w = 0.5*(1.0 + sqrt(bb1))

a0 = 0.5*(v + sqrt(v*v + aa2))

inva0 = 1.0/a0

a1 = (1.0 - v)*inva0

a2 = -0.25*aa2*inva0*inva0

b0 = gain*(0.5*(w + sqrt(w*w + bb2)))*inva0

b1 = gain*(1.0 - w)*inva0

b2 = gain*(-0.25*bb2/b0)*inva0*inva0
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